4.2 Moments in Three-Dimensional Force Systems
4.2 Moments in Three-Dimensional Force Systems Procedures and Strategies

Procedures and Strategies for Solving Problems Involving Moments in Three-Dimensional Force Systems

1. To calculate the moment of a force \(\mathbf{F} \) about a point \(O \),
 a) Express \(\mathbf{F} \) in rectangular component form.

 b) Define a position vector \(\mathbf{r} \), with tail at point \(O \) and head at *any point along the line of action* of \(\mathbf{F} \). If you have more than one possible choice for \(\mathbf{r} \), choose the one that gives the simplest form for \(\mathbf{r} \). Express \(\mathbf{r} \) in rectangular component form.

 c) Evaluate the cross product: \(\mathbf{M}_O = \mathbf{r} \times \mathbf{F} \) (If you have a scientific graphing calculator, use its built-in cross-product function).

2. To determine the shortest distance \(d \) between a point \(A \) and a given line, assume that a force of unknown magnitude \(\mathbf{F} \) acts along the line, and then make use of the fact that two different formulas exist for calculating the *magnitude* of the moment \(\mathbf{M}_A \) about \(A \):

 \[
 \mathbf{M}_A = Fd \quad (1)
 \]

 and

 \[
 \mathbf{M}_A = |\mathbf{r} \times \mathbf{F}| \quad (2)
 \]

 where \(\mathbf{r} \) is a positive vector with tail at \(A \) and head on the line. Then

 a) find a unit vector \(\mathbf{u} \) parallel to the line, and express it in rectangular component form;

 b) express the force as \(\mathbf{F} = \mathbf{F} \mathbf{u} \).
4.2 Moments in Three-Dimensional Force Systems Procedures and Strategies, page 2 of 2

c) express \(\mathbf{r} \) in rectangular component form,

d) compute the cross product

\[
\mathbf{r} \times \mathbf{F} = \mathbf{r} \times (\mathbf{F} \mathbf{u}) \\
= \mathbf{F}(\mathbf{r} \times \mathbf{u})
\]

Then Eqs. 1 and 2 give

\[
\mathbf{F}d = \mathbf{F}|\mathbf{r} \times \mathbf{u}|
\]

Cancel \(\mathbf{F} \).

Thus to calculate the shortest distance \(d \) from point A to a line, just calculate the magnitude of the cross product of \(\mathbf{r} \) and \(\mathbf{u} \).
4.2 Moments in Three-Dimensional Force Systems Problem Statement for Example 1

1. Use the cross-product definition of the moment of a force to determine the moment of the force about point A. Also, compare the sign of the result with that obtained from the scalar definition of positive moment, \(M = Fd \).
4.2 Moments in Three-Dimensional Force Systems Problem Statement for Example 2

2. A force $F = 20$ N is applied to the end of a string of length L. The other end of the string is tied to the handle of a wrench as shown. Use the cross-product definition of the moment to determine the moment of F about point A. Discuss the effect of distance L on your answer.
4.2 Moments in Three-Dimensional Force Systems Problem Statement for Example 3

3. A shower/bathtub grab bar is being pulled by a force $F = 30$ lb as shown. Determine the moment of F about the support A. Also determine the coordinate direction angles of the moment vector and interpret the result.

Diagram:
- A shower/bathtub grab bar is shown with a force $F = 30$ lb applied at an angle of 40° and 60°.
- The grab bar is supported at points A and B, with distances of 16 in. and 8 in. respectively.
- The grab bar is shown with dimensions of 5 in. at the top and 3 in. at the bottom.
4.2 Moments in Three-Dimensional Force Systems Problem Statement for Example 4

4. A force $F = 15 \text{ N}$ acting parallel to the z axis is applied to the handle of a socket wrench to turn a bolt at A. Determine the moment of the force about the point A. Also, state which component of the moment tends to turn the bolt.

Diagram:
- A force $F = 15 \text{ N}$ is applied parallel to the z axis.
- The wrench handle is 100 mm from the bolt at A.
- The wrench is 80 mm from the point B.
- The z-axis and y-axis are marked.
4.2 Moments in Three-Dimensional Force Systems Problem Statement for Example 5

5. Pulley B is used to drive pulley C. Determine the resultant moment about bearing A produced by the belt forces acting on pulley B. Also, interpret your result.
6. A child on a bicycle collides with a mailbox and exerts the force F shown. If the base of the pole at O will fail if the magnitude of the moment there exceeds 60 N·m, determine if the mailbox will fall over.

\[
F = \{80i + 12j - 10k\} \text{ N}
\]
4.2 Moments in Three-Dimensional Force Systems Problem Statement for Example 7

7. Copper tubing emerges from the wall at A and is subjected to a force F at its free end B. The tubing will fail if the magnitude of the moment at A exceeds 3 N·m. Determine the largest value of the force F that can be applied to the free end of the tubing.
8. Two forces, \(P = 60 \text{ N} \) and \(Q = 80 \text{ N} \) act on the vertices of a cube as shown. Determine the moment of each force about point O, if the length of each edge of the cube is 2 m. Also, determine the shortest distance from O to the line BF.
4.2 Moments in Three-Dimensional Force Systems Problem Statement for Example 9

9. Determine the moment about the screw at A of the force $F = 2 \text{ N}$ applied to the sheet-metal bracket shown. Also, determine the shortest distance from A to the line connecting B and C.
4.2 Moments in Three-Dimensional Force Systems Problem Statement for Example 10

10. If the tension in the cable BC is $T = 80$ lb, determine the moment about point A of the cable force acting on the frame at point B. Also, determine the shortest distance from A to the line through B and C.